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Summary

The paper contains the theoretical considerations on an estimation of parameters in
linear model when original data are selected by given truncated point, but the selection
intensity is not known. The maximum likelihood estimators in truncated normal
distribution are determined. In the next part of the study, the estimation of
parameters in mixed model (under truncated normal distribution) is discussed.

1. Introduction

Prediction of the breeding value (BV) is one of the most important questions
for breeders. On the basis of the best prediction it is possible to carry out a
selection with maximal genetic gain. Quaas and Pollak (1980) developed the
classical BLUP (Best Linear Unbiased Prediction) theory for the so-called animal
model (AM). An advantage of the AM method for prediction of BV is the possibility
to include into considerations not only the phenotypic value of all related animals
but also the relationship matrix.

For the best linear unbiased prediction it is necessary to estimate the com-
ponents of variance. Many papers have been devoted to this problem (Swalve
and Van Vleck, 1987; Hill et al. 1983; Van Vleck, 1986; Vischer et al., 1991).
There are various methods for the estimation of the components of variance, but
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the most frequently used is restricted maximum likelihood (REML) estimation.
This quadratic estimation is translation invariant and therefore is unbiased not

only in a random population, but even in the selected population (Van Vleck,
1985; Van der Werf, 1992).

In the conventional breeding program of livestock the populations are selected.
For example in cow and sire evaluation programs selection of heifers is based on
their complete lactation yields of milk, fat and protein. In this situation heifers
are culling after the first complete lactation, i.e. the first lactation records are
unselected. The data from the second and higher lactations are selected. Using
multivariate AM in the case of repeated measurements the prediction of BV is
unbiased even in this situation (Thompson, 1973). Another approach to the
problem of estimation and prediction in the selected population was suggested
by Henderson (1975). In the second variant it is possible to provide a selection
of heifers on the basis of a part of lactation. Records from the first lactation are
selected before the end of lactation and therefore the prediction of BV using
Thompson and Henderson approach is biased.

In our paper we would like to present how to solve the case when original
data are selected by a given truncation point, but the selection intensity is not
known. At first, the maximum likelihood (ML) estimator in truncated normal
distribution is determined. The system of equations is solved by quadratic ap-
proximation of selection intensity and a simple example is given for illustration.

2. Linear model. Normal distribution.

Let us consider a random variable y with normal distribution N(u,02,y[)
truncated at the point y,. The density function of this distribution is:
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ML estimators of u and ¢ are a solution of the system of equations
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InL = i Inf(y;) = const + Ino™ _% 2 (ZJ.;_E)Z +1In[1 - F(yt ; u)]_,, '
-

=l

53

After substitution of partial derivatives In L into (1) the system of equations for

estimation of p and o is
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is the mean of selected records.
It is possible to show that
Ey)=u+io,

E(s®) = o +ioly, -5, ,

where
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If expected values in (3) are substituted by the sample mean and variance then
the system of equations for estimation of parameters u and o is nearly identical
with the system of equations for ML estimators (2), only sample variance s%is

used instead of s> in the ML system (2).

Approximating selection intensity i by a quadratic function:

o fw
1-F(u)
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one can show that the estimators of p and o are the solution of a system of
equations:

a___ys_ [a+b(yt(; H) +c(yt‘; .U)z] 5
gy ‘ ; @
o = (- V)0 - Fo) + 8

where a = 0.867, b =0.603, ¢ =0.071.
If variance 6% is known a priori then the system (4) is reduced to one equation:

0.071p% - [0.142y, - 0.3170]j: + 0.8670% + 6(0.603y, ~ 7,) + 0.071y2=0. (5)

By solving this quadratic equation we obtain the estimator

b=y, +0(V14.084 %% _ 43989 - 2.7957) . 6)

g

Example: Let us assume that the average milk yield per one lactation, greater
than 7500 kg (truncation point y, = 7500kg), is y, = 8000kg. It is clear, that
¥s = 8000kg is not an unbiased estimator of u, but it is overestimated. If the
variance of milk yield is known a priori, for example o? = 1600, then after
substitution into equation (6) an unbiased estimator of u is approximately equal

i = 7500 + 40[V14.084 —&Q% - 4.3989 - 2.7957] = 7912

If the variance is unknown, ¢ and u can be evaluated by solving mixed model
equations.

3. Mixed linear model

3.1. General considerations

Consider the mixed linear model:

vy=Xp+Zu+e ,

where:
y is the nx1 vector of observations,
B is a px1 vector of fixed unknown parameters,
u is a gx1 vector of random effects having normal distribution N(0; UIZII),
e is a nx1 vector of random errors having normal distribution N(0; ofI),
X, Z are nxp and nxq incidence matrices, respectively,
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with cov(u,e) = 0. The mixed model equations (MME) for fi and 1 are

X'XB + X'Zii = X'y ,

2 (7
ZXB+ ZZ+y' D=2y, fory= % .
In a selected population the expected value of y is not X, but
Ey,)=Xp+A.
It is possible to modify MME (7) by elimination of bias A
X'XB+XZi=X(y,- A) =Xy, - XA ,
ZXB+(ZZ+y i =2Z(y, - A)=Z'y, - ZA . ®
After separating p and wu it is possible to obtain:
B=B,-W'X -XZZZ+y''2A -, -W'XP,A) ,
~ ©

=1,- U2 -ZXXX)'X)A =a,-U'ZPA
where
W=XX-XZZZ+y'I)'ZX=XP, X ,
U=ZZ+v'1-ZXXXY'XZ=ZP,Z+y''T,
P,=1-ZZZ+y')y'Z ,
P, =-1-XXX) X',
f=WIXP,y
i,=U"ZP.y
[B, and wu, are solutions of system equations (7)].

If the matrix X'X is singular an alternative formula for the prediction of 4
can be used:

~

=0, - (ZZ+yH'Z0 + XWX (A -ZZZ+vy'D)'Z)A
=i, - (ZZ+y)Y'Z( + XXP,,X)'XP, )A

From equations (9) it follows that the bias is dependent on matrix Z'Z and X'X.
The above given formulae may be used if the value of A is known. Unfortunately,
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A is often unknown. Hence we will present two approaches to solving this
problem.

3.2. Thompson’s approach

Thompson (1973) derived the estimation of the mean on the basis of a likeli-
hood function. In this case we assume a two-dimensional normal distribution

) ()

where
Vi Vi
V= .
(VZI V22
ML estimators of u; and p, are solutions of the system of equations:
dalnL -0,
dnL _ ¢ ,
duy

where

L=L(yyys, - Vo Vilyi)

is the likelihood function of random vectors y; and y,, - V21V]}y],s. Considering
that (because of the factorization of the likelihood function)

cov(Y 1o ¥2e = Vo1 Viiyi) = Vige— Vll,svﬂvlz,s =0,

the solution of the system (10) is computable.
If selection is carried out according to random vector y, then parameters of
selected random vector y, , are changed in the following way (Thompson, 1973):

EYz) =tz =ty + Vo Vit - 1)

var(yz,) = Vags = Van = Vo Vii(Vyy = Vi VIV,
cov(y2,¥1s) = Vare = Vo ViiVin,

cov(Y15¥2,) = Vize = Vi ViiVis

M=o, ~ Vo Vi, - 1)

where p;, is the mean of the selected random vector y;, and Vi, is the
variance-covariance matrix of the random vector y, .
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3.3. Henderson’s approach

Henderson (1975) suggested another approach. Let us assume that selection
is provided according to a random variable w (selection index). Prior to selection,
the expected values of y, u, e, w equal:

y Xp
u 0
E el = 1o (11)
w 0
and their variance covariance matrix is
y VvV ZG R
u GZ G 0 B,
var| | = R 0 R B,|" (12)
A B B, B, H

Estimator of B is a solution of the system of equations:
XVIXg=XVly .

Prediction of the random variable u can be achieved on the basis of the regression
analysis:

U - E(f) = cov(i,y) (var(y)) (y - E(y)) .

Using E(u), E(y), cov(u,y) and var(y) given by (11) and (12), one can show that
the predictor of u is equal to

a=GZV'y-Xp .

Henderson (1975) proved that this process is equivalent to the MME in the
following form:

X'R'XB+ X'R'Zii =XRy 13)
ZR'XB+(ZR'Z+Gii=ZR 'y
From the model equation y = Xp + Zu + e it follows that
B = cov(y,w) = Z[cov(u,w)] + cov(e,w) = ZB, + B, .

It is possible to derive expected values and the variance-covariance matrix of y,
u, e, w in the model y = XB + Zu + e after selection:
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y Xp+ BH's
B H!
E[N| = [ = & (14)
e BH s
w S
and
V-BHB ZG-BH,B, R-BHB, BH'H,
var = LS , (15)

R - BHB -B.HB, R-BHB, BH'H,

Yy
u Gz -B,HB G-BHB, BHB, BH'H,
e
w HH'B HH'B, HH'B, H

S

with H, = H'(H - H)H™.
After selection, covariance cov(u;e) = 0, and it is not generally true that

V. =Z'GZ +R, ,
where

V,-V-BHB ,
Gs =G- BuHoB/u ’
Rs =R - BcHoB'e O

Therefore it is not possible to use MME (13) with matrices R, G, instead of
matrices R and G.

First, it is necessary to compute estimators of (AS and s from the system of
equations:

le;lx X’V;IB . ﬁ X’V;ly

BV;'X BV,'B [ ] S BV.y|

s
Predictor @1 is determined on the basis of correlation with y:

i - E(li) = cov(y,il) (var () (y - E(y)) .

After substituting E(u), cov(y,u) and var(y), E(y) after selection from (14) and
(15), it follows that

i =B,H'S + (GZ' - B,H,B)V;!(y - XB - Bs) .
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4. Comments

If selection intensity is known, it is possible to compute é and u very simply
from a system of equations (8) or (9), where ﬁs and 4, are solutions of the usual
MME (7). The advantage of this approach is that in a simulation study one can
see the extent of bias for various selection intensities and various incidence
matrices X and Z. Alternatively, it is possible to use the Henderson approach or
the Thompson ML estimate for multitrait AM. Henderson used the best predic-
tion in the case of a given expected mean of variable w, characterizing selection.
Thompson (1973) used multitrait AM, where repeated records are expressed as
several traits on each animal.

The selection intensity is often not known. Then it is not possible to apply
either the Henderson or Thompson approach. In the special case, when the
truncation point is given, ML estimator provides unbiased estimation of BV as
it is shown in section 2. In the general case it is necessary to incorporate the
whole information about selection into the estimation of BV,

As mentioned above, the distribution parameters of both the observation
vector and vectors of fixed and random effects change under selection. This
influences the estimation and prediction (Henderson, 1984). However, assump-
tions concerning distribution parameters are also taken into account in the
estimation of variance components. Henderson (1984) reported that conventional
assumptions are correct in unselected populations, only. Generally, the variances
are reduced in these populations. As already mentioned, under selection nonzero
covariances between random effects (for instance random genetic and random
error effects —see section 3.3) are generated. The magnitude of the bias is difficult
to express for two reasons. Firstly, since selection intensity varies from, let us
say, one herd to another, a different set of parameters would be needed for each
herd. Secondly, correlation between u and e complicates the computations. More
details concerning the biases of variance component estimators under a selection
model are given by Schaeffer (1987). He concludes that the degree of the bias of
the dispersion component estimators is connected with the definition of the
so-called selection rule matrix.

Problems presented above are often ignored in genetic analyses of quantitative
traits in selected populations. However, it must be stressed here, that a simula-
tion study performed by Rothschild et al. (1979) indicated that estimation via
MIVQUE with good priors, REML and ML may considerably control the bias
caused by selection.
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Estymacja parametréw w modelu liniowym dla
danych selekcjonowanych

Streszczenie

Praca zawiera teoretyczne rozwazania dotyczace estymacgji parametréw w modelu
liniowym, w przypadku gdy oryginalne dane sa selekcjonowane, a intensywnosé
selekcji nie jest znana. Wyznaczono dla danych "obcietych”" estymatory najwieksze)
wiarogodnosci parametréw modelu. Dalsza cze$é pracy zawiera dyskusje dotyczaca
réznych podejéé do problemu estymacji parametréw w modelach mieszanych.

Stowa kluczowe: metoda najwiekszej wiarogodnosci, model mieszany, selekcja, "obciety”
rozktad normalny.



